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STATICS AM) STABILITY W THIN WALLED ELASTIC BEAMS 

ABSTRACT 

Formulation of fuadiaental equation« of elastic equilibrium of thin 

walled beans subject to general loads and dislocations starting only 

fro» the hypothesis of non deforaed transverse cross sections. 

Fomulation of the fundanental equations of dynaaic stability of thin 

walled beaaa subject to general conservative loads and dislocations 

by use of a systematic geoaetrical approach. 
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i) srarics 

1,1) Introduction 

Tb« theory of «lastic equDlbrlua of a cyllndar subj«ct to 

loads applied at the bases and represented by ■ general systea of 

balanced forces, ha« been accurately and completely developed by St. 

Venant (l] [sQ «1th the traditional hypotheses of OM^aneity, isotropy 

and linear elasticity. 

This study represents the background of the so called "technical 

theory of the beaas" which applies with approziaation the results obtained 

by St. Venant to all the real case« concerning the elastic equllibriua 

of cylinders subject to any type of loads und constraints. 

Such application is founded in a classic postulate carryini, 

St. Veuant's -aaas and is synthetically expressed by the following 

principle: "if a systea of balanced forces acts on a Halted area S' 

of the surface S of a body, its effects daap out as they leave S' and 

actually Gisappear at distance O  depending upon the shape and th« 5i$e 

of s"; 

Such postulate peraits to deteraine stresses and dlsplaceaosts 

Having knowledge only  of six clasuic stress characteristics coänected 

with the constraints and Hada applied to the body, the areas close to 

constraints »r concentrated loa^s excluded. 

However, soae conditions are indispensable; of which the moat 

iaportant are: 

1) the cross section diaensions aust be coaparcble; 

2) the body's length aust be auch greater than the above mentioned 

cross diaensions. 

It is the classic case of solid section beams for which the 

technical theory has a good correspondence with reality. 

The saas thing does not apply to thin walled beams.  In fact, 

auch structures are characterized by three diaensions, anyone of which 

is negligible if coapared to the next one: 

a) thickness of the wall 

b) average dimension of the cross section 

c) length 

For this type of structures, which are always more widely used 

by technical practice, it has been necessary to generalize the results 



obtslced by St. Venant, specifically ss i«r as toraioaal  stresses are 

concerned; a new theory has been ezpxesscd Justifying, with s*>prozl~ 

■atlon, the dlscrepanciea b«t«een technical theory and teat controls. 

This new theory known as "the theory of sectorlsi n~z*s", 

developed by VlaaovQiQfO *nd Tlaoühenso föj [öj for bssss of open 

cross section, has been la\er jenorslijsd by EarBan-Chrlstensea i?J 

for teaKS of general zross  '»sctioc. 

Vlasov EykJ, Ws^ier [sj, Kappus [s], Goodier [lo] . etc. 

applied this theory to the problea of elastic equtlibrlua gt»i.iiity 

and thetr r»3ults have been confirmed by t*!3t controls. 

Nevertheless, as It has been noticed by Karasn-Vgi^Zang- 

ChisD liij , vhe sectorial area theory is only the fir.it tera of a 

repetition procedure the validity of which Is in certstn case« doubtJf ul. 

auch theoryj 1;. fact, basically consists is dividing th? 

ebesr flow produced by tha twisting soss&nt into tso p*ris: the prissry 

Siiear fio« typlcsJ. e* 3t. Venaat'a theory, sod the secosdary shear 

flo» säso^ist^d with the asfsa) ctresss* csassd by the ■scn-unifGrs 

särplag of e?«>»s ßäctioas dus to the jprisasry fio*. 

Iss faet, th* sect'n-lsl areas theory r^iijisis into ths cls^äis 

salutioa of St» Vsasnt *h«n fi^isiDg  is ccaätsst is the length of ths 

lass. Hcweves-, this theory aegiect* the T?arpiss caaged &y tne ssecoadar^ 

gheer fioe whi2h sossstt^s saa be ssr« tonspieusus tLi»n the prlaary one, 

sad; coE«equsBtlyf faaoaissEtally chsnges the static condition; further- 

sores said tfesery, -ives isproving eoßaidsrably the correctness of cal- 

culation of stresses aad deformations inside the body, cannot be applied 

in the areas ^nich sr$ olo««» to conncrminte  or concentrated loads. 

As £ cooclusion, ss can say that the "sectorial areas theory" 

ig for the thin wslled beaas ehat the "technical theory" is for the 

solid section beau; in other words, the liaitations of both en be 

coneidercd identical. 

Therefore, in this Note we want to re-examine froa the origin 

the problefih-of-slaetle-equilibriuB of thin welldMaewwsabject to very 

general loads and t*1»locations, making use of a very general nethod. 

In fact, the correct solution of the probleas pemtts to 

eliminate the liaitations related to St. Venant*s postulate and to 

determine exactly soae problems of considerable interest for the theory 



as vail a.i for the practice, as: 

1) the calculation of stresses in the areaa close to concentrated 

loads snd external constraints; 

2) the calculation of stresses associated w;lth general loads acting 

on the surface of the beam; 

•) >.ne calculation of stresses associated  it'a general dislocation, 

of general Interest for the study of therslc or plastic actions. 

In the first part of this study the prob.'.ea of elastic equi- 

librium of thin walled beams will be considered fro.i a general viewpoint 

sad basic equations and boundary conditions will be furnishedi then, 

above »ntloned problems will be studied and solved. 

1,2) Tbs sssic hypothesis 

The basic hypothesis on which we found our study is the 

hypothesis of a transversaQf indefontable cross section. Such hypo- 

thesis vhich appears also in the theory of sectorlal areas and in 

Sarssn's study, is generally acceptable for the thin walled beams 

because of shear dlaphrams used for structures of this type with 

the purpose of avoiding the buckling of the wall. 

Such dlaphrams are usually realised by msans of thin plates 

welded to the wall, in order to avoid defoittaticcs of tha cross section. 

Nevertheless, being such plates very thin, we can imagine 

them having no resistance to warping outside their plane, and, conse- 

quently, leaving the beam cross section free to warp. 

Therefore, in this study we will consider the profile as 

uniformly stiffened along its whole length, that is, we will consider 

every section as keeping unchanged its shape during the displacement 

associated with general loads conditions. 

1,3) Kinematic relations 

With reference to the profile shown in fig. 1, having a constant 

thickness t and a general cross section, we denote G the centrold and 

0 the shear center of the cross section. 



•■»■ 

Pig. 1 

We refer the points of the surface to the orthogonal right-hand 

tern Qsjz,  of which axes %  and y coincide with the principal Inertia 

Utes of the cross section and axis z Is perpendicular and passes through 

the centrold G. Turtheraore, we refer the bean surface to the two groups 

of ortbo|^mal lines foraed by directrices and generatrices of the cylin- 

drical surface, choosing n normal to the surface in a point Pirn,*.),   and 

• and z  such that the directions tern (n, a,  z) is right and can be super 

iaposed on fixed tern Qxyz with a rigid action. 

Being P  the displaceaent of point P, we denote: 

u » u (J: y z), 

v m v (i: y z) , 

w « w (x y z), 
(1,1) 

the coaponents of such displacenent on the axes of fixed tern xyz, end 

we denote: 



I = \ {.a,   a,  z) , 

f ■ H, (n, », E> , (1,2) 

^ K ^ (n, s, z), 

the components of such displacement OR a s z.  Fron well known relat...  s 

we know that: 

v • u. «0« + Y9(%* 4- iS**» (lf3) 

being t/ij   the direction cosine of the straight line 1 with the axis 

j, and since in our case: 

OCmt *r Cfmm » Gf/tm » &** — *^ 

(1,4^ 

being: 

x = Jt <s) and y = y (s) (1,5) 

the cartesian coordinates of tiug points of the surface, the equation 

(1.3) will becoae: 

dfs   aft 
(1.6) 

The basic hypothesis permits to deternine the displacement 

in the plane z y of every point of the cross section with only three 

parameters only depending upon abscissa z.  In fact, denoting: 

Uo = "o W 

Vo * v0 (z) (1,7) 

% - f.  U) 
the displacement component on x and y of the shear center 0 and the 

8«ction rotation around the s<uar center, the first two equations (1,1) 

can be written as follows: 



■rt»re   (x0,  y0)  «re  the coordinates of   the shear center 0  (fig.   2), 

Tierefore,   using equations  (1,6),  we have: 

Cl,8) 

(1.9). 

Fig. 2 

We observe that the quantities: 

»•»<«- «o> S ' «y - yo> fs 

<x 
. dx  ,     . dy 

xo) d^ + <y " yo) S 

(1,10) 

er« the coaponents on the aues s and n of vector R s OP, therefore 

equations (1 2) can be finally expressed as follows: 

ms       ols 
(i,ii) 



Consequently; the aotion of every point of the bean is expressed 

by the following four functions: 

Uo * u0 U)  , 

vo " vo <s)  • 

• a • (n,s,z)  , 

and the latter can be considered, with a good approziution, independent 

of n, in consideration of the ssallness of thickness t,  and can be 

written: 

w . w (s.z)  . (1,13) 

1,4) glasticity relations 

If we neglect the normal stress STJt , we can espre^s as follows 

the relations between the stresses components and the unit strains in 

the thin wall surface: 

In a eore general case the strain components will be expressed 

by the following relations: 

(1,15) 

where  *   is the elastic strain and S        the strain due to a general 

dislocatioi. systea, ad a thermic, plastic system etc. 

So equations (1,14) can be written: 

(1.16) 



Furtbernore, the basic bypothasls pcralts to reduce the 

uzümovns; in  fact, since «e must  have: 

•s= 0 (1.17) 

for the cross iodeformability of the section, the norul stress G» can 

be expressed: 

6;-yöV- fm? (i,i8) 

while the shearing strain JTrnm      can ^ expressed as follows: 

«here 2%  , ify   ,  and /^ are general functions of x. 

The basic unknowns, expressed as special stress coaponents, 

can be reduced to the following two functions: 

where; 
*—&?&• - ^ *#~ * *J 

(1,20) 

«■«-«*/-• "fiS* ci .21) 

Taking into account the classic relations: 

equations (1,20) CLU be written as follows for (1,6): 

(1.22) 

1,23) 

and they express the general elasticity relations of thin walled beans. 

£4uations (1,23) represent the valuers of normal stresses «5^ 

and shear stresses ü'n9 corresponding to the aiddle fiber of the wall 

foraiug the profile. 

In reality such stresses vary along thickness t of tho wall, 

but actually they can be considered constant because of the thickness 

saallness. However, if the profile has open cross section, it is neces- 

sary to consider, together with the stresses (1,23), the shearing stres- 

ses linearly variable along the thickness and vanishing in correspondence 

with tho middle fiber associated with the twist of the wall caused by 

external torque. 



3uch stresses, classic of St. Vcnant's study, can be expressed, 

with good approxiaatlrn, «a follows: 

being n inS dlstanje becween the fiber aad the ciddls surface; in fact, 

said stresses ar^ the only ones which develop for a constant twist of 

the bean and, consequently, allow the bean to balance the external 

torque. 

In fact, as a result of (1,24) we obtain a twisting nosent 

H , having the well known expression: 

being J     the torsional rigidity which, in case of open sections of 

constant thickness t , is written: 

3 
where m is the length of the middle line, and in the case of cross section 

consisting of several portions of different thickness t^, is: 

* 3 

If the profile has a close section (box or milticell beam), 

stresses (1,24) are no more necessary to give torsional rigidity to the 

beam.  In fact, also in case of constant twist, the external moment is 

almost completely absorbed by a flow of shear stresses constant along 

the thickness; and, compared with such stresses, the contribution given 

by equations (1,24) is quite unimportant. 

Therefore, in these cases, stresses (1,23) are sufficient to 

balance any external action and, consequently, are the only stresses 

which are considered acting on the wall. 

1,5) Kquilibrium equations 

With reference to the wall element ds dz inside point P(s,z) 

of the middle surface, the equilibrium equations to be imposed coincide 

with the three equilibrium conditions relative to the displacement along 

axes n, s, z.  The first two, concerning the equilibrium along normal n 

and tangent s, become unessential because of the hypothesis on the inde- 

9 



foraability of cross section of the besa.  In fact, in such directions 

the »quilibriua is guaranteed by the sutual actions of the stiffeners 

on the wall which can be so calculated. 

Therefore; if we denote p2, px,  p , ^ (fig, 3).respectively, 

the  loed acting in the direction of axis z on the wal] eleaent ds dz; 

Che loads acting in the direction of axes x and y and the twisting 

scment on an eleaent of the beaae having length dz; the equilibrium 

equations are written: 

£.'* 
S 

(1,28) 

Oil 

Fig. 3 

being T . T , M, the resultants of internal stresses  VÄÄin the x  y  i 
direction of axes x and y and the resultant saonent in regards of shear 

centers 0. 

\ 
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These latters can, therefor«, be expressed as follow«: 

7Z~ fzrmmsU9lÄ 
a/* 

(1.29) 

A 

being M the Internal moment expressed by equation (1,25) and associated 
2* 

to stresses 2«« which «111 be taken into account only in the case of 

open sections. 

The last equation (1,29) can have the same for« for open 

sections as well as for box or «ulticell sections, by introducing a 

warping function associated with constant twist. 

Such function, which we denote COm  , represents the axial 

«arplog function w(s) of th« points of th« «all alddle line «hen subject 

to a constant torque having unitary negative gradient "yr* 

In the case of open section beaas, such function is obtained 

by observing that, since, in accordance «ith St. Venant's solution, 

&M0       equals 0 in correspondence «ith the middle line, the second 

equation (1,23), having: 

(1,30) 

gives: 

a/& (i.3i) 

On the contrary, in the case of close or aulticell sections 

(fig. 4), such function can be obtained by considering that, since ff9 

coincides «ith the flow of stresses resulting fro« known solution of 

Bredt-St, Venant: 

* (1,32) 
11 



t»elng f  the flow constant   (♦),   the second equation  (1,23),   in conside- 

ration of   (1,30)  and   (1,32),   gives: 

tt/oej. (1,33) 

Fig.  4 

(*) We sust reaeKber that flow constants f, for every element of aulticell 

section, can be obtained with the partial flow f1 and f^ relative to 

■eshes i and k having such eleaents in comon. The partial flow constants 

f^  can finally be obtained from aonodroslc condition of */"   and, con- 

sequently, of ctf*    which Imposes for every circuit the following relation: 

ftSs-fe ±t/s~ O 
(1,33)' 

fro« which, denoting .&/the area enclosed by circuit i, we obtain: 

SS2;-. /t^ y. JE:/,*^ ^ O (i,34) 

where Of;    represents the geometric clrcuitation: 

relative to the whole circuit 1 and &/#   represents the partial geome- 

trical clrcuitation of the element in common to meshes 1 and k.  Eqs. (1,34) 

represent a system which is linear for unknowns f. and of simple solu- 

tion.  In view of the above it is easy to obtain constants f. 

12 



Therefore, from equations (1,31) and (1,33), with a sitrr.le 

quadrature procedure, ve can obtain, neglecting an arbitrary constant, 

the expression of function C*JK   .     In general the constant Is elimi- 

nated with the auxiliary condition: 

/«/„ «^/-r O (1,35) 

Thus, equations (1,29) can be written as follows: 

/   o/s la/* 
for open sections, and: 

for close or BUlticell sections. 

Denoting ttc   the nuaber of close aeshes of cross section, fro» 

•quatlona fl.23) wa have: —— . 

(1.37) 

taking into account the relations: 

equation (1,38) gives: 

(1,39) 

(1.40) 

13 



and, iatroduclng th« Dotation: 

itio« (1,37) can be vrltt*n as follows: 

(1,41) 

and It appears identical to the equation already obtained for open 

•ectiooe and expressed by (1,33), 

Therefore, without considering the type of beaa cross section, 

equations (1,29) can be written as follows: 

0/s. 

t'/r-'g" 
(1,42) 

reisulting connected to the cross section geoiietry b>   the three basic 

functions: 

x ■ x (s) y » y (■) CJL>g * CtV») 

For these functions, ve mist rekeaber that, since we chose 

axes x and y as aain Inertia axes and the center or rotction 0 as shear 

center of the section, we will always have the basic relations: 

In fact, we can ootaia the coordinates x and y of com n "t 

rotation 0 by iaposlng the last two equations (1,43), or by using 

Jouravsky's procedure for close or cellular sections [,12j , 

(1,43) 

14 



1,6) Basic equations of el«»ttc equilibrium of thin wall»d be»« having 

continuous directrix and coactant thlcknes« 

We can now obtain the basic equations of elastic equillbrlua of 

thin vailed beams, by  changing the Indefinite equilibrium equations (1,28) 

into terms of displacement.  For the moment, since *« consider the body 

free in the space and subject to a system of balanced forces, we know 

the three transversal characteristics T_ (z), !„ (z), M, (z>, and we *       y       z 
can simplify equations (1,28) as follows: 

3*^ 48.    ^ t 

The first of these equations expresses the equillbrlua in the 

direction z, and the three other ones express the Identity between the 

resultants of Internal shear stresses and the corresponding stress 

characteristics; suc^i equations can be expressed for the displacement 

parameters (1,12), taking into account the elasticity relations (1,23); 

In fact, we have: 

(1,44) 

** ** */s     J<ßs e/* f 

i: 



after introducing the notations: 

f 
^"*^*~/&*m/J*/dce&&*/J* c*) (1,46) 

Therefore, equations (1,45) are the requested elastic equilibriua 

equations of thin walled beans subject to loads and dislocations.  Such 

system can be siaplified by drawing from last three equations the functions 

&■&& 
in function of the stress characteristics T , T , 

^ _    ^  * j 

M2 and axial displaceaent K^,    For tils purpose, denoting D the determi- 

nant of ayametrical matrix coefficient' 

/#/« «t,*     #/is | 

I «i« m%t  M%»  I 
j (1.47) 

and denoting D  the complementary matrix of element d., , we obtain from 

las. three equations of system (1,45) the following relations: 

{»♦) The last two equations (1,4) are directly verified for open sections 

with equation (l,3r) and for close or cellular sections with equation (1,33) 

and with the following relations: 

Us(t*'4~it'$i*/*'0 <i'<7>' 
which ensue from the equilibrium condition in the z and y direction. 

1 



(1,49)' 

If we operate In the second part of equations (1,48) the following 

linear changes: 

(*♦*) Equations« (1,49) require the following Invorsed relations to be true; 

furthemore, It is easy to verify that the six functions: 

js *& irr '     „/s 'irs'ns- 
have the following properties: 

jßg^.l,    jß^.O,    JggM.O 

* 4 'A 
which can be controlled taking into account the deteralnants properties 

and the relation: 

17 



rftK*I/i>,.rx+z>„7}+v,atf,J 
we cam slnpllfy as follows: 

(1,50> 

Hß^'g"*' 
'4 

Therefore, the basic equation of thin walled beams is obtained 

by substituting (1,51) in first equation (1,45) and observing that for 

equations (1,31) or (1,33) we always have: 

In consider*tion of the above and taking into account equations 

(1,49) and (1,50, wp obtain the following integral differential linear 

equation: . 

which is of basic importance for the study of thin walled beams of 

tr&asversally indefonable section subject to general forces and dislo- 

cations.  In view of future applications, it is therefore adv  able to 

express the elasticity relations (1,23) by the displacement ax^pl compo- 

nent ^iXffJ'    This can be done simply by taking into account eqi itions 

18 



(1,51); therefore we have; 

(1,54) 

which are the final «xpresfilooä of elasticity relations for thin walled 

beaws. Equation (1,53) «ist furnish solutions satisfying the boundary 

conditions on the bases (z = 0 and 2=1) and the transversal conditions 

depending upon the sh >e of the bean section described in following 

paragraph. 

1,7) Boundary conditions connected with basic equation 

We divide the boundary conditions into longitudinal conditions, 

regarding the external bases z = 0 and z = 1, and tranev«rsal conditions. 

In case of longitudinal conditions we notice that, if we con- 

sider a body fiee and subject to a system of balanced forces, said con- 

ditions rill necessarily impose the equality, in every point, between 

external actions p»m       and f^im       acting respectively on bases 

z = 0 and z = 1, and corresponding normal stresses Ssfaf) and ^J/c^s); 

therefore, they are as follows: 

,i   \ (1'55) 

<ym[ltsj^ jot. 

Equations (1,55, expressed with equations (1 ,;-4) for displacement give: 

**0 

(1,56) 

which represent the two necessary longitudinal conditions to be associated 

wi* i basic equation (1,53).  We notice that on bases z » 0 and z = 1 

the laentity In every point between external actions and Internal stresses 

19 



concern» onl,- norsal stresses and not shear stresses for which «quations 

{1,44}  guarantee gxohal identity referred to resulting actions (forces 

and aonent). 

As far as the end bases ar« concerned, the difference in 

every point between external actions fi^mm     and internal stresses 

"Zffgm   is entirely absorbed \rj  two existing stiffeners and, consequently, 

does not ~ause any additional deforaations or stresses not even In the 

areas very clone to the two bases. 

Equations (1,56) are therefore tha only longitudinal conditions 

concerning the extreae bases. 

A different procedure is required for transversal condltiocs, 

since they depend upon the type of the cross section. Therefowe, we 

will consider ' \ea  case by case in regards to the sh  ^ of the cross 

section directi 

a) Open sections having continuous directrix 

We consider as continuous directrix a curve having functions 

x(s), y{s) and co (a) continuous i'p to the second derivatives; such 

sections (fig. 5) cannot have aor? than two generatrices and we denote 

s. and ?2 respectively their curvilinear abscissa. 

Flg^-5 -   

If we denote PjC?-) and ^2^'t^   the tangential loads eventually 

acting on such generatrices, and t the constant thickness of the wall, 

20 



we can write the transversal conditions as follows: 

I* 

Taking into account equations (1,54) and denoting L(w) the 

term: 

(1,58) 

'A 
equations (1,57) can finally be written as follows: 

K-U- f^- *-(£)- ZfgJ- »r.*6"J 

IM- 7teJ_ ^0J_ r/£j_ nrfr 
■y <l,59)a 

b) Close sections having continuous directrix 

In addition to what stated in paragraph a) above, concerning 

the definition of continuous directrix, for these sections (fig. 6) 

the transversal conditions will be expressed as continuity conditions 

for functions Mff^,  S/ and CguC^t^J  (beinK t constant) in the 

limited field of curvilinear abscissa s.  Such conditions, reflecting 

the double aspect of geometrical compatibility and equilibrium, will 

be expressed as follows: 

f  0 (l,57)b 

which, because of equations (1,54) and the hypothesis of continuous 

coordinate functions, become: 

££*£*/*=: O      I^jTe/s^O (i.59)b 
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Fig. 6 

Fros equations (1,59) In the form a or b, In accordance with 

the type of cross section associated with the longitudinal conditions 

(1,56), we can obtain unlvocally the solution of basic equation (1,53), 

1,8) Basic equation extended to thin walled beams having discontinuous 

directrix and discontinuous constant thiclcness 

In reality the thin walled beams are nearly always formed by 

more than one element (fig. 7), everyone of which can be considered 

as an elementary beam having continuous directrix and constant thickness. 

Fig. 7 
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Denoting n the nusber of elements forming the beaa and 1 

a general «lemonx,   the displacement parameters indicating the Motion of 

every point of the beaa cross section will be the n + 3 functions: 

9C{*J 

being w. (Sj, z) the axial dJsplaceBent of point V^   {a^,   z) of the 

element »Addle surface. 

Then, denoting Xj (Sj) , y^   {B^.O^^   i»i},   ri  {s^   the functions 

typical of element i, and xi  (Sj) , j^   (.3^) , JZ  , is^)   the varied expres- 

sions : 

where Dlk are always the complementary matrices of elements d^ of 

determinant (1,47) which, this time, we express as follows: 

J^^/Mbjl/J. 

*»*■ 

n 

(1.49)' 

(1,46)' 

Ul.- 
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the equations detensimng dispiaceaects   Li» ,   /£    ,   To   ,   vith expres- 

5 sions   (1,50)   of  forces    Ox    <    £ f     •   /S£K      ,   becoae: 

(1.51)' 

Therefore, n equations determining displacements w^will be 

written as follows: 

r* «äST« »<*/ ^v«, ^^     ^'••■/ssrifc 
'4. ■ '  " 

o/** •"/<?*,^£7       eis       ^ -t- 

(1,55)' 

«here tj represents the coistant thickness of eleaeut 1; P ^ (»j) represents 

the axial load acting on said element for unit of surface; and *£"*■/ 

represents the anelastic strain coaponent acting on the same element. 

Therefore n + 3 equations formed by (1,51)' and (1,53)' generally 

»olve the problem of elastic equilibrium of tbin walled beams, providad 

tbat its section has constant discontinuous thickness. 

In order to solve said equations we must find the longitudinal 

and transversal boundary conditions. 
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The first ones express, ms  usual, the equilibrlun condition: 

^'fci/J**/=>*,,; 
(1.55) 

and, reduced In terms of displacement, give: 

while the transversal conditions will concern geoiretrical compatibility 

and equilibrium conditions corresponding to every junction point of 

several consecutive elements. 

Denoting k the number of elements present in the junction 

(fig. 8), these latters will be written as follows: 

(1,56)' 

^rfe t, n* fa *jL 7?CrJ (1,57)' 

where s. Is the curvilinear abscissi* of the Junction in relation with 

eleaent i, and P^ (z) is'the eventual external tangential action acting 

on the Junction point itself. 

^*-^-« c 3 

w 

Fig. 8 

In the sunanation, the positive signs concern the elements 

having curvilinear abscissa converging in the Junction point, and the 
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negativ« OMS concern the r««i»ining eleaents.  Therefore, equations 

01,57)', written tn tencs •{ dlsplaceaent, give: 

and is obvlc^uB the change, if the end of elenent 1 is free rather than 

coniMCt*d to other elements. 

1,9) Coacluaions 

Fro« the study perforaed it aopears clear that the problea of 

elastic equilibriun of thin walled beans, considered as cylinders having 

transversally indeforaable profile, is acre complicated than what could 

be expected following the benas technical theory or the «ore recent Vlasov's 

theory of sectorial area. 

In fact, the problea can strictly be expressed by an integro-dif- 

ferentlal equation linear to the partial derivatives In unknown function 

w (z, s), which physically coincides with the axial coaponent of points 

displaceaent of aiddle fiber of the wall. 

Such equation is not of difficult solution; a general solutioia 

will be furnished in the following part of this report, showing how our 

solutions are siallar to those obtained by abo/e mentioned approximate 

theories and pointing out the unavoidable approxlaation of saae theories. 
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2) STASILITY 

2,1) Introduction 

tat  static behaviour oi  &  thin walled beaa In regards 

rnder appears conspicuous when  we study Its equilibriua 

te the classic behaviour of the beam subject to combined 

SSpresslve stress, which bends In a aaln Inertia plane of 

case ot  unstabllltj due to axial stress, the thin walled 

Ton bends and tvlats at the saae tine under loads uuch 

"corresponding to Eulero's fontula. 

alllty of having a flexlo-torslonal buckling under 

Covered when thin wallevi aeabers of open section 

Lrst tlae in designing aeronautic structures: many 

I, Ostenfeld [la} , F. ani H. Bleich Qll . «nd 

tted the laws governing the phenomenon.  Only with 

to the more recent studies of Tlmosnenko^Sj and 

ther wll^i the works of VlasovflSJ and Goldenweiser 

principles have been established: in order to 

determine the presence of bending In the beam, the center of gravity 

had to Sf^HBRltuted with the center of torsion; only when the axis 

of the center of tors'on was rectilinear no flexural energy «as present 

in the thin walled members; and, furthermore, the warping rigidity C^ 

was exactly formulated. 

Of greet Importance are the studies performed by Vlasov [iSj 

for the formulation of a theory concerni.-jg the unstability of the thin 

walled beam of open section subject to normal, bending and shearing 

stresses, and the studies performed by Krall 1,17j, who obtains the stabi- 

lity equations by using the variation*! approach with the introduction 

of the twisting moment and considering various cases of combined unsta- 

bility. 

The constent progress of technics led to an always wider 

application of the thin walled beams; this structural element Is now 

present in most civil and industrial, naval, aeronautic and space 

constructions! 

Therefore, the study of equilibrium stabi Ity of a thin walled 

beam of open section is always of great interest and new problems arise: 

as, for instance, the basic one concerning the Influence of the dislocation 

on the stability, its effect and the effect of external cor.bervatlve and 
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conconsorvative forces on the dynaalcs, etc. 

Thus, we want to ezaalne again the whole systea of elastic 

equilibriua stability of the thin walled beaa subject to general 

loading and dislocation and we try to set up P new general theory. 

The study of  such beams, as conducted in the first part of 

this report and connected with researches underlay, the results of which 

will be furnished in a later report, confirm the validity of sectorial 

areas theory without consideration of local effects connected to the 

presence of concentrated forces, holes, etc. 

Thus, making use of Vlasov's static theory, staple and suffi- 

ciently correct for an invest'gation on such phenomena, we obtain, in 

accordance with dynamic method, and using a geometric systeuatic pro- 

cedure, the basic differential equations governing the stahility problem 

of the beam motion under generally distributed conservati 9 forces and 

dislocations. Sisc.- equations are expressed by the load'i itrectly applied 

and the stress conponents corresponding to the bas c ^o/i'lguratioi? and 

includes four functions characterizing the flexural, ton ional «no 

eztensional oscillations respectively. The eztensional ->scillatimt is 

often neglected, but is interesting because of Its stabilizing effects. 

The systom of forces F0 (x y z) acting on the tain walled beam 

is formed by distributed forces Q0 (z, s); Q0 (z, s); Q0 (z, s), which 
x        y z 

have the same direction of axes x, y, z, and are functic.is of curvilinear 

abscissa s formed by the center line of the cross section.  Such forces 

are conservative and keep their direction during the displacement of 

the points at which they are applied and generally originate a distri- 

bution of transversal forces p0 (z) and p0 (z), axial forces p0 (z), 

bending couples m0^ (z) and *P    (z), twisting couples m0z (z), and 

blmoments 0° (z). 

The dislocations system ^ (x y z) causes a stress condition 

which can be annulled, generally, only by dividing the body into its 

elementary particles or, raore simply, by cutting it into a finite number 

of planes.  The introduction of the dislocations system Q    (x y z) will 

be useful later for the study of the unstabilizing effects caused by 

residual stresses, non uniform thermic field or prestresslng systems. 



2,2) General remarks on approach ■ethod 

Fig. 9 shows the axes system where C Is the centroid; x and y 

are the Bain inertia axes of cross section; z is the centroid axis. 

The coordinate!* of shear center 0 in the section plane are x and y . 

The external forces are generally represented by components 

Q0_ (z, s), Q0„ (z, s). and Q0_ (z, s) having the sane direction of x y z 

axes x, y, z of fixed coordinates system Cxyz; and ara general functions 

of curvilinear abscissa s formed by the center line of thin cross section 

and by abscissa z.  Such forces will be considered as conservative forces 

and, specifically, as keeping unchanged their directions determined by 

fixed axes x, y, z respectively. The loads at the end sections are 

formed by a distribution of general forces but still conservative cor- 

responding to normal, sheering, bending, twisting and warping actions. 

The coaction state due to dislocations is represented by normal and 

shearing stresses in every cross section selZ-balanced if the external 

constraints do not react. 

Therefore, with reference to a general cross section of the 

body, the stress state will be represented by seven stress characteristics; 

bending moments M (z) and My (z); twisting moment M (z); shearing stresses 

Tx (z) and T  (z); blmoment B (z), as shown in fig. 10. 
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n. 

Fig. 10 

The thin beam aotlon will be tormei  by: 

a) a syätea of displaceaents, typical ,f a flexural oscillation, 

by which the axis of shear centers 0 bends in the planes xz and yz, 

and the cross sections of the be^m transfer along their planes and 

rotate around axes x and y; 

b) a system of displacements, typical of a toisional oscillation, 

by which the cross sections transfer along their planes, rotating around 

the shear centers axis (which remains rectilinear) and warp because of 

the sectorlal ar«as; 

c) a system of displacements, typical of an extensional oscillation, 

by which the cross sections transfer in parallel with themselves along 

the direction z of fixed system Cxyz. 

The new actions developing along the direction z on the element 

dA dz will be calculated by determining: 

1) the transversal and axial elementary forces due to the change of 
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direction of stresses f cjA   ,     V    (i/\      ,     9 4A   ,   folio»*ng the 

fibers buckling; 

2) the eleaentary couples, which «e call "turnover" couple?, causing 

the rotation of eleaent dA dz around fixed axes x  »nd y and z ni6  due 

to the coaponents along axes x, y, z of fixed syst«B of eleaentary forces 

V    4A     ,      V    (JA   t        <r dA      .   »ctlng on the buckled body; 

3) the eleaentary couples, which we call "displaceaent" couples, due 

to the fact that forces tr ejtf , "XT dA , G" dA > acting on the 

two sides dA of eleaent dA dz and the surface forces Q ($4)dd. Q (zt-i) d^, 

^jV-^/Sj^-iJ , during the buckling, assuae a different position in regards 

of fixed referenced systea. 

Further, we calculate the actions which, because of the degree 

of freedom of cross section, are consequent on the previous ones; in this 

Banner torques distributed on z will be associated to a transversal eleaen- 

tary load, and bending couples and biaoaents will be associated to axial 

actions. The determination of inertia forces will complete the calculation 

of the actions caused by iaposed displacements. 

Such procedure is sistematically used for the flexural, torsional 

and extensional oscillations and permits to formulate the general equations 

expressing the motion of the thin walled be" in general as well as taking 

into account the unstabilizing effects of stresses (correapor-ding to the 

basic position of the beam) and of tne surface loads. 

2,3) Effects due to flexural motion 

Let us consider the flexural deformation.  It is characterized 

(fig. 11) b/ displacement coaponents: 

u (z, t)  ;  v (z, t) (2',i) 

of the line of shear centers 0; and, for the rotation of sections around 

axes x and y, by the displaceaent component along axis z. 

i Bu. £?(/■ (2,2) 

We consider, above all, the unstabilizing effects due to stresses 

and we calculate, along axis x of fixed system Cxyz, the components 

df of the elementary forces ac.ing on the elementary buckled stripe dA dz 

of the beam pertaining to two cross sections at the distance dz.  With 

reference to fig. 12, representing . e projection of dA dz on the plane 
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Fig.   11 

x  z,   we have; 

v.- -«s^^^^^n^41"; (2,3) 

since the load Q z (z, s) ds dz applied on the element does not give any 

component along x and keeps the direction of axis x. 

ul-t^ 
<l4dZ 

(*■*&<*)« 

Fig.   12 

Developing equations   (2,3)   we obtain,   neglecting quantities of 

higher order  than  the first: 

32 



As (2,4) 

In this manner, for unit of length, we heve the cross elementary load: 

^=f(«i^; (2.5) 

Correspondingly, we have the elementary moment dMy, due to the 

nts or #1 On   aion compone 

around axis y; it is: 

g x which tends to turn over the element dA dz 

iny--^f^ (2.6) 

in this manner, for unit of length, we have the elewentary distributed 

moment: 

**> "- ^ dz 
and, for the whole section 

^ - -//* t ^ 

(2,6/) 

(2,7) 

Projecting the buckled element on plan© yz, we heve (fig. 13): 

because, also in this case, the loads Q0Z (z,s) have no effect along y. 

(Vs**^ 

Fig. 13 
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L«cveioping equation  (2,6)   we obtain,   for unit of  length: 

■^ = is (^ If ^ 
In  the  same nanner as  f<r equation  (2,6),   we have  the nsoment : 

dH z-tlJfiiZdZ (2,10) 
cendlng to turn over the element dA dz around axis x; for unit of length, 

me  have the eleoentary distribution moment: 

a/*C--«:^|^ (2,io') 

and, for the whole section: 

-If S 'Mt,*-] "* Si4" (2,1» 

Integrating equations (2,5) and (2,9) en the transversal area, 

we have the new distributed actions due to the fact that, in buckled 

condition, normal stresses 6^ lean forward forming variable angles in 

regards to the original direction of z axis. 

Thus we have: 

Equations (2,5) and (2,9) give the transversal load due t:> the 

flerural buckling of the elementary stripe dA dz; consequently, we have 

the following twisting elementary moment distributed along z: llowing twisting elementary moment distributed along z: 

the symbols of fig. 13 which shows as positive the twisting 

(2,13) 

using the symbols of fig. 13 which shows as positive the twisting moment 

(or the angle 4 ) if its direction of rotation Is the same bringing a?.!. 

x on axis y. 

Integrating on the whole cross section A we obtain: 

*r-IU**%cw-**&''-*jy* (2,14) 

Equations (2,8) and (2,10) are always valid if the loads Q0 (z.s) 

keep the same direction of axis z of fixed system Cxyz.  Let us consider 

now the effects of shearing stresses t'   and ^.w acting on the transversal 

sides dA of the elementary buckled stripe. 

With reference to fig. 14, showing the projection of element dA dz 

on plane x, z, we calculate the components along z of elementary forces 
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cv-^ 

Fig. 14 

acting on the buckled stripe. 

Therefore we have: 

du. (2,15) 

where the effect of surface loads Q0  (z, s) is not present, since such 

loads remain parallel to the axis x of fixed system Cxyz. 

In conclusion, for unit of length, along z we have the following 

elementary axial load: ' 

In the same manner, considering the projection of buckled stripe 

dA dz on the plane zy to calculate the effect of d, , oblique in regards 

of fixed axis y, we have (fig. 15) : 

where is not present the effect of conservative loads Q0  (z, s) which 

keep their direction along y. 

Developing equation (2.17), wa have:  

(2,17) 

dsr 
(2.18) 
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Fig. 15 

representing the new action along z due to the different slopes of stresses 

in the buckled state of element dA dz; for unit of length, from 

equation (2,18) we have: 

Jp^-f^y&V dfc' */#* 
(2,19) 

Equations (2f16) and (2,19) refer to the elementary area dA; 

for the whole area A of the beaa cross section, we nave the following 

new axial action: 

^ 
(2,20) 

To equations (2,16) »nd (2,19) are sssociated some distributed 

bending moments, since they act at distance x and y from the axis of the 

centroid; therefore, we have for 

moments din and d.u^ 

9 f -r-     du. 

** 
the elementary distributed 

'*« -i(^i yv dwr -§■&£*d*) 
and for 

Integrating on arv>a A we finally have: 

^y- - / tz ^ *X*J
3C     *?**■ ' 

(2,21) 

(2,22) 

(2,23) 

(2,24) 



Turthernore, equation (2,16) gives tlie blmoment variation: 

(2,25) 

Equations (2,7), (.>311), (2.12). (2,14), (2,20). (2,23). 

(2,24), and (2,25) represent the new actions due to the variable slopes 

of normal and shearing stresses in the buckled stac?, but it is essential 

to notice that in such condition the forces acting on the element have 

a different position if ccmp?r(;d to the fixed axis Cxyz.  Obviously, this 

changes the stresses field in the body; in order to calculate this effect 

it will be sufficient to refer to the elementary stripe JA dz and consider 

the moments, relative to the forces acting on two sides dA as well as 

those actir-j on lateral surface of dA dz, due to the displacement of 

such forces freu basic position to the displaced one. 

We begin by considering the effects of the displacement of 

elementary shearing forces C^ QH    and T" Üff    , ulstributed on A, 

and of surface forces Q0Y (z, s) and Q0 (z, s). 
*        y 

7   ^«o 

Fig, 16 

With reference to fig. 16 we have for the elementary stripe 
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dA dz the following change of twisting aoment: 

(2,26) 

Integrating on area A and on center line s of the cross section, 

we obtain for unit of length: 

4 JA JS Ji 
Also because of the rotation of cross sections around axes 

x and y, the elementary internal forces ^    **f     ,     "C^    dfj   and the 

external surface loads 0°^ (z, s) aod Q0  (z, s) move their points of 

application of quantity: 

With the sane procedure previously used, we obtain the following 

distributed elementary bending couples: 

(2,28) 

(2,30) 

integrating en A and s we finally have: 

* i (2,31) 

(2,32) 

S 
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The calculation of effects due to the displacement of forces 

directed along axes x and y is no* complete; now we want to consider the 

effects of displacements of normal forces ^ Orf  , distributed on A, 

ard of surface forces Q z (z, s). 

With reference to fig, 16, we have the following elementary 

displacement couples: 

«r-r 

x. 

(2,33) 

(2,36) 

4H -.e-M^dz'-'uM^tO***4***   (234) 

integrating on area A and on line s, we obtain for unit of length: 

™X.        I   t-dZ**     I     <9Z. «V (2.35) 

Now we calculate the corresponding inertia reactions. 

Being M the mass for unit of volume of the thin beam, 

for the elementary mass dA dz the following forces correspond to the 

displacements (2,1) and (2,2): 

*     ' at1 

Ji* (2,37) 

obviously, to (2,37) correspond the distributed couples: 

(2,38) 



Integrating on the whole section ee obtain the following action« 

/>,--/"» ft'- r* = ° 
for unit of length: 

On the contrary, the blaoaent which seems to develop from (2,37) 

eqaals zero; in fact, we have: . 

(2,39) 

2,40) 

(2,41) 

because the sectorial coordinate t«j is orthogonal to the coordinates 

x and y. 

2,4) Effects due to torslonal oscillation 

Let us consider the torsional buckling shown in fig, 17. 

Since the cross sections rotate around the shear center asls, 

every element of the area dA moves along x and y as follows: 

u (z, t) = (y0 - y) ^ (z, t) = - (x0 - x) p 

and moves along z, because of the warping 

(z, t) = -  U» 
62 

(2,4a) 

(2,^3) 

as it results from the sectorial areas theory. 



The angle (fe  , together with the twisting nonent Mz,   is 

therefore considered positive i±   it brings x on y, being z downward. 

Considering above ^11 the effect of stresses g^ we calcu- 

.dte the components along x of elenentary forces acting on the buckled 

form of the elementary stripe dA dz (fig. 18). 

x' 

T T 
cye-y)i   oi-y)C^ w<fc; 

,9- 9% (vf^J^ 

Fii^. 18 

As in the case of flexural motion, wa obtain the transversal 

action relative to the buckled element dA dz: 

(2,44) 

since, also in this case, the load Q0^ (z, s) keeps its direction.  From 

equation (2,44) we obtain, with reference to the unit of length, the fol- 

lowing elementary transversal forces: 

<*& = & h^-v U^J (2.45) 

In the same manner, considering the projection of dA dz on 

plane y z we obtain (fig. 19): 

4V -i [w; gat] 
(2,46) 
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(tr*^)M ez 

r .'ig. i9 

Integrating on A, »e obtain: 

(2,47) 

(2,«8) 

which represent the transversal load» developing on the thin beam slightly 

twisted due to the different slope of stresses P. act iig  along the 

fibers. The loads Q  (z, s) also in this case remain parallel to axis 

z of fixed system Cxyz. 

Furthenaore, as in section 2,2), for equations (2,45) and (2,46) 

we have eleaentary turnover soaents d VL   and d My due to the components 

along y and x  of elementary forces fr &ft    ;   they are; 

<.«.. «;w.-«j^^A 
(2.49) 

jrating equations (2,49) cud 

(2,50) 

integrating equations (2,49) end (2-50) on A we obtain, for unit of length: 

#Ä <2'51> 

(2,52) 
'4  '*  ''* V #; 
sä a result of equations (2,45) and (2,46) we obtain the 

eloi&cmtary twisting moment distributed as follows; 

üb. * -Wvt^^ <2.53) 
due to the fact that dp and dp act at distances (y0 - y) and (x0 - x) 
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fro« tba axis of nhmtr  center; int«gr«tiaf *• obtain: 

Las um  coasldor now the unstabilisiag effects due to «bearing 

streasea l^-» aad C^ which, because of toraional buckling, produce 

coaponenta along the directions of axes x,  j  and x of fixed ejratee Cxfz. 

Since the fibera of the thin beae bend because of (piz),  aa we did for 

the flezural aotion, we calculate the coaponenta along z of eleaentarjr 

forces H^jglt*      *nd ^>y*", distributed on A and variable along the 

buckled fiber. 

Froa the projection of eleaent dA dz on planea zx and zyt  we 

obtain, in accordance with figa. 14 and 15: 

Integrating on A, for unit of length, we obtain the axial 

distributed load • 

Equation (2r56) furnlshos th« diftriöut#d bending vonent^: 

(S.ää) 

'M'«* /•»/#* L'ÄV^ V •y-*    'll~'l (2 57) 

(2,58) 

and the blaoieent variation: 

Lea ua calculate now the unatabllizing cctiona corresponding; 

to coapoüents of tT^dn  and ^y**" . distributed on A, on axes x and y. 

We cönsitldr the elesentarjr »tripe dA dz of fig. 20; it will 

be stressed on two sides dA, of abscissa z •«■ dz and z  respectively, by 
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•Isatntarj Xorcsi 

Flg.   20 

b»nt in regsrd? ol flx«d «« x sad y o* r-*l*fu'4+   *^t   ) 

^       ,  fcolng    ^ 

^ 

and 

■a4    *     th« flirtet ten* iti aojstl* uc«e x and y. 
• P 7b« load» Q*^  {«,  e)  dsds" cod 9"y  («,  •>  <l6<!s vtil act on the aid« 

aurffce d" de of  th« strip« and «111  *»»c tb« directions of xixed 

ex«B z and y. 

By c^iculatinc tb« coavonents on z aud y of all forces seeing 

on dA «ix, v« obtain th« transv«r«al  loads.    Thus wo bav«: 

* <?'« tjto a* . t  dtic* j 4   t    4.(1 M / ^ 

Pfc L ^ J/ 
(2.80> 

For  the equlUbrlu« in th» basic pf-iiitio», w« bav«: 

aad «quatlon (2,60) is »iaplift®d as follows: 

^  =~ii^f*'V4* (2,61) 
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r9pr«**ntlaff the new tranavaraal force«, distributed on dz and directed 

alone x, da« to the new slope of shearing atress«s after buckling; for 

unit of length, we have: 

being t^y r Vt~ . 

In th« Maea Bannerc performing a projection along y, we obtain 

the cleaentarj transversal forces directed aloug y and relative to the 

length dz of eleeent dA dz; 

ö>     f 

= *t%J <**)<'* 
being, for the equilibria* along the direction j  in the basic condition 

For unit of length, we have: 

Integrating equations (2,62) and (2,S5) op the area A of cross 

section, we obtain the transversal leads: 

^ - LftC*~W (2,67) 

4# 

produce the following turnove;. couples around ST^S S and f 

Purtheraor?, the coapoasü.s al^ng z and 7 of fev^  and 

•tä 



(».«t) 

Iat«gratinc oo A, v* obtain,  for unit of  length: 

Vnm «Mjuatlon« 12,62)  mad (2,65) «• obtain tha di«trlbu;ed 

aiaaaatary tolttlng 

(2,70) 

(2,71) 

/«       # #» (2,72) 

whichj by Integration on area A, we have: 

•if M 
In this aannar va have calculated tha new action» davaleplng 

along abaciasa z of the thin walled baaa In a slightly buckled for« doa 

to th* variable alopaa of the atraaaaa. For tha calculation of auch 

actions we did not conaldar tha warping of th« croaa section, baeausa 

it causaa only a variation of ganaratrlcaa length and not their bending; 

4n the contrary, h* shown later, it will affect tha calculation of 

rMspliceaent aoaenta. 

For the calculation of such displacaaent aoaeuts, we consider 

that, tecaua« of diaplacaaanti« 

« - (Fo " y> ^   '        v « - (^ - x) ^ 

th« »b< «ilng atresses 1^-  and ^^ «nd the aurface loads Q0 and 

Q0 laoved along y and z resoactiv«ly; thus we have, as in equation 

(2,27>K the eleaentar; distributed twisting soakants: 

* / 

froa which, integrating on A, we obtain 

(2,74) 

^Jhi^^-'^y^'-^}   + (2,75) 
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Let uc coocider no* tbc warplox of cross «ection ot  positiv« 

aectori«! coordlv^st«; bocaus« of this warplocvhicb varlss tlonj; z 

with O/ , the shearing stresses ^H 
an<t ^Oy   aad tiM surface loads 

Q0 (z, s) ssd Q0 (s, s) ■wve In parallel with tbeaselves; In the sas« 

■anner a» for equations (2,31) and (3,32), we have the distributed 

bending couples: ag couples:        - ,. « 

(2,76) 

«P^ 

No« «e calculate »he effect of -its' i«ce»»nt of noraal stresses 

ftr,  and of surface loads Q0_ (z,  a). 

As for equations (2,33) and (2,34) we have the dispi«ce«ent 

eleaentary couples: 

(2.78) 

*nr'  *%*"^r. y)&**   $z *-*    * (2.7») 

fro« which,   by lutagv^ting on A,  we obtaiu: 

* J4 **    4 4 <2,80) 

%* kLysy)l*M*j*£^yJ^fö^^ 
$ ^ & (3,81) 

fto* «® Cbiculale the inertia forces appearing during the 

to!sioaal aotlon. 

*lth reference to w!o»e-atary auss dA A»,  we have the eleweotsrjr 

force;/ ■ 



U I fit fit* 
correspondingly, we have the elementary couples: 

ill 

(2,82) 

(2,83) 

Equations (2,82) and (2,83) give the cross and axial distributed 

forces: 

(2,84) 

and the couples: 

/T^^O      ^=0       *Ü=r^5F       (2.85) 
while the components dfz give the binoaent variation: 

tl- t41* 575?* (2'86) 

being  J^  and J-^ the quantities: 

polar moaent of the cross section in regards of the shear center 0 and 

sectorial Boment, respectively. 

2,5) Effects due to extensional oscillation 

Let us consider the extensional oscillation. 

Since the sections have only displa. aents w(z) along 

(fig. 21), in the extensional buckling we do not hawe variable slopes 

of stresses, in regards of axes x, y and z, a&w corresponding unstabl- 

liring effects do not appear.  On the contrary, we notice soae ucstabi- 

lizing effects beouusio, due lu the extensional dlsplaceaent w, variable 
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with z, the «haarliig stresses tL sad C^w and tbe loads Q0X (s. s) 

and Q0y (z, s) aove In parallel with themselves. So w* have the bendtn« 

distributed couples: 

(2,88) 

(2.89) 

W 

Fig. 21 

p^ = 0 

s^ 

Tbe inertia forces are given by: 

Py-0 Pz —^ 

s ■ s B s 0 

(2,90), 

(2s9i) 

IÄ««9((p^' 
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2.*J §£BSt£J oquatlc-na of dyn«»ica of thin walled beams 

In paragraphs 2,2), 2,3) and 2,4) above we calculated the actions 

devfflosti»j; on the thin vailed beaK during It? dleplacenent caused by 

flMUral, toralonal and extenslonal buckling.  They are alvaya balanced 

with rim  elastic reactions and the loads directly applied; If we approzl- 

M»oe tSe curvatures In the planes xz  and yz to th© curvatures in j^ 

»nd y\        ,   we will obtain the following differential equations systes: 



+Jf<£(y.-o-<?;(*.^ ^S''*''4 

Abov« sjftes, togethor »1th the boundary and Initial condition», 

furaisb«« th« action of th« b«as under (F0) and (Ä*) ; these lattara ar« 

represented directly by  distributed load« Q0X (z, •), Q  (z, a) and 

Q0r (z, ■> and indirectly by stresse» coaponent« ^ , t^   , V^y   , 

corresponding to the basic equilibrium condition. 

As far as stability Is concerned, It Is Interesting to d-teralne 

the value of the aultlpller /k.  of (1°)   and < ^*) for which the aotlon 

Is no jore liaitBd;JEi9uch case of conservative forcea and dislocations 

the change froa stability to unstablllty will be expressed by the value 

zero of the aotlon frequency. 

Above systea (2.93) also includes all the problems of stability 

and dynaaics of thin walled beaa of close section and of the solid section 

beaa and can be easily applied to the various particular canes, expressing 

f roa tiae to tlae the applied loads and the stresse» component« 4L  , tl   ty^,- 
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